
Software for a Nei Modified Cholesky Factorization

Elizabeth Eskow and Robert B. Schnabel

CU-CS-443-89 August 1989

X . *.- *'-

F 77 7 7- 7 O

89 10 24 222



Software for a New Modified Cholesky Fact.Azation

Elizabeth Eskow and Robert B. Schnabel

CU-CS-443-89 August 1989

Department of Computer Science
Campus Box 430

University of Colorado,
Boulder, Colorado, 80309 USA

This research was supported by ARC grant DAAL-03-88-0086, NSF grant CCR-8702403,
and NSF cooperative agreement DCR-8420944.



Any opinions, findings, and conclusions or recommendations expressed in this
publication are tnose of the author and do not necessarily reflect the views of the
National Science Foundation.

The findings in this report are not to be construed as an official Department of the
Army position, unless so designated by other authorized documents.

E



Abstract

This paper describes the software for a new modified Cholesky factorization recently proposed by the

authors. Given a symmetric but not necessarily positive definite matrix A, the modified Cholesky factor-

ization computes a Choleskv factorization of .4 + E, where E = 0 if A is safely positive definite, and E is

a diagonal matrix chosen to make A - E positive definite otherwise. The modified Cholesky factoriz.t iCon

was introduced by Gill and Murray and refined by Gill, Murray and Wright, and is commonly used in

optimization algorithms. Our version, which is based upon new techniques, has a considerably smaller

a priori upper bound on the size of E than the Gill. Murray and Wright factorization. and appears to

generally produce a smaller E, and a well-conditioned A + E, in practice. Its cost, like the Gill, Murray

and Wright version, is only a small multiple of n2 operations greater than the standard Cholesky factor-

ization. Thus it may be useful in optimization algorithms. We summari7l olr algorithm and describe

the code and its use.



1 Introduction

This paj.'r describs the software for a new modified Cholesky factorization algorithin Iren 111

Schnabel and Eskow [19S8]. The modified Cholesky factorization is intended for matrices that are sym-

metri,: but not necessaril) positive definite. Given a matrix A E Rn ×'n. the modified Cholesky factoriza-

tion computes
pT( + E)P = LLT(orLDLT),

where P is a permutation matrix, and E E R ' is 0 if A is safely positive definite, otherwise E is a

nonnegative diagonal matrix chosen such that A + E is safely positive definite. This type of factorization

was introduced by Gill and Murray [1974] and subsequently refined by Gill, Murray. and Wright f19SI]

It has become important in solving problems in optimization, and is used in many line search methods

for unconstrained an,'. constrained optimization problems (Gill. Murray. and Wright [1981]) as well as in

some trust region methods (Dennis and Schnabel [19831).

The modified Cholesky factorization of Schnabel and Eskow has superior theoretical properties

to the method of Gil. Murray, and Wright, and appears to have computational advantages as well. The

upper bound on IjEj_, for Schnabel and Eskow's method is at worst about 2na, where o = max Ai,i j. as

opposed to roughly n2 o for the method of Gill, Murray, and Wright. In addition, extensive computational

testing of the software described in this paper was performed by Schnabel and Eskow [1988], on a set

of randomly generated indefinite matrices with n = 25, 50 and 75. The norm of the matrix E and

condition number of the (A E) computed by this algorithm were compared to those produced by

the Gill. Murray. and Wright "1981] factorization. In almost all cases, IIElK for the new algorithm

was significantly smaller, while both methods consistently produced acceptably conditioned matrices.In

addition, the IIEIK produced by the Schnabel and Eskow algorithm almost always was within a factor of

2 of the magnitude of the most negative eigenvalue of A, and often much closer. Another nice property

of the new factorization (Gould [1989]) is that in applications like multifrontal methods, where A is large

and sparse and no pivoting is performed, the matrix A may be generated and processed incrementally,

as the factorization proceeds, whereas the Gill, Murray, and Wright method requires the entire matrix

to be known, and processed, in its initialization stage. Thus, the new factorization may b" useful in

optimization and other contexts.

In Section 2, we give a brief description of the algorithm. Section 3 demonstrates the use of the

algorithm on a small (4 x 4) example matrix and section 4 explains the parameters and organization of

. . ,, i i Ii i iII1



the code Aj~pnd1,ws A and B provide a sample driver and its output, rest itvely. and .C\pptidix

conitaiis the :df,,r the modified Cholesky factorization.

2 The Modified Cholesky Factorization Algorithm

This section briefly describes the modified Cholesky factorization algorithm presented in Schnabel and

Eskowrl988 ]. Some detail concerning the techniques used to prevent an ill-conditioned result is included

because the user has the option of adjusting two tolerances related to this. The cost of the factorization

is also described. For a more detailed explanation of the entire algorithm, see the originai paper.

The new modified Cholesky factorization uses a two phase approach to compute Pr(A-- E)P

LLT. where A E R " ' is symmetric. E is a nonnegative diagonal mat rLx or 0. L is a lower rian, :ula

Matrlx and P is a permutation matrix. Phase I computes the standard Cholesky factorization. an.

ends when the next iteration of the standard factorization would cause some diagonal elenent in th,

remaining submatrix to become non-positive. It performs diagonal pivoting based on the maxinium

diagonal element of the submatrix remaining to be factored. Schnabel and Eskow show that at the end

of this phase. no element in the submatrix that remains to be factored is larger. in magnitude, than the

sum of the magnitudes of the largest diagonal and off-diagonal elements in that submatrix originally.

Phase 2 does a modified Cholesky factorization. meaning that at each iteration, an amount

E., > 0 is added to the pivot A, before the elirration step. A diagonal pivoting strategy is also used.

but in this phase the pivot row is chosen to be the one with the maximum lower Gerschgorin bound

estimat, (see below). The amount E,, added to the pivot element at each iteration is determined from

the actual lower Gerschgorin bound of the pivot row. Schnabel and Eskow show that due to the choice

of E,. the Gerschgorin bounds of the next remaining submatrix (after elimination) do not grow. In

turn, this implies that IIEI', is bounded above by the magnitude of the most negative lower Gerschgorin

bound of the submatrix that remained to be factored at the start of phase 2. This, combined with the

growth bound for phase I leads to the theoretical result mentioned in Section 1.

The entire algorithm is outlined in Algorithm 2.1 below.

2



Algoritlmi 2.1 - Modified Cholesky Decomposition

Given A E R""' symmetric and 71 and 7, (e.g. 71 = r2 = macheps )
find factorization LLT of A + E, E > 0

- max IAii: j I

(* Phase One, A potentially positive definite *)
While j < n do

Pivot on maximum diagonal of remaining submatrix
2

If min {Ai- "_} < r1 7
j+l i~n " A))

then go to Phase Two
Cist perform jl iteration of standard Cholesky factorization

and increment j
(* Phase Two. A not positive definite *)

k := j - I (' k = number of iterations performed in Phase One *)
Calculate lower Gerschgorin bounds of Ak+l
For j := k + 1 to n - 2 do

Pivot on maximum lower Gerschgorin bound estimate
Calculate E.j and add Ejj to Aj

(" = max{0. -A. + max.{ jA~jj, _-:}. " , )

update Gerschgorin bound estimates
perform /a iteration of Choleskv factorization

complete factorization of final 2 x 2 submatrix using its eigenvalues

In order to prevent A + E from being singular or very ill-conditioned, the algorithm includes the

fullowing details. Let " be the maximum diagonal element of A, and r1 and -,2 be some small constants

(our default choice is 7, = 72 = machepsi). The switch to phase 2 is made when some diagonal element

in the remaining submatrix would become less than 71-y, implying that only an indefinite matrLx or a

positive definite matrix with condition number greater than -L may be perturbed. During phase 2, the

the amount Ej to add to A,, is

Ej, = max{O,-Aji + max{ Z IAij[,r 2"},E , -ii}

where Ej-,,1 - is the amount added to A.-,j-i in the previous iteration. The -2 y term in the above

computation allows the condition number of A + E to be bounded above. The final place in the algorithm

3



whcr- tho zonditioning of the resultant matrix is addressed is in the final ((n - 1)3' ) iteration of h

fac torization. Eigenvalues \:, and Ah, of the remaining 2 x 2 submatrix are computed, which are thln

usod to calculate

1-1 = E ... = max{o, E_,, _,- ,Ao + . * max{- (Ah, - ) :3), }}.

This causes the 12 norm of the resultant final 2 x 2 submatrix to be no greater than ,and in practice

usually results in E,-I.,- ha-ing a smaller value than would otherwise be obtained using Gerschgorii

bounds. The analysis in Schnabel and Eskow [1988] includes these details. In practice. the condition

number of .4 + E is usually no greater than 10/min{r, -r2 }, although this bound does not hold in theory

Phase 2 of the algorithm pivots on an estimate of the lower Gerschgorin bounds of the remaining

submatrix. Let G,.(j < i < n) denote the lower Gerschgorin bound estimates used during the .':

iteraion. The actual lower Gerschgorin Circle Theorem bounds are computed once at the start of piir>,

2. giving

G, = Ai,- Z Ask I - 1.4Il, i ,. ..
k =j k---+l

where j >, the iteration in which the algorithm switches to phase 2. Thereafter, at each iteration j the

bounds are estimated by

A1., IA~jl
G, = G,~_.i[ -=-- 1 i j. ,n.

Since in the calculation of the estimates of the bounds, the sum , IA,, needs only to be computed
i=j+l

once at each iteration, the cost of computing the bound estimates is at most n2/2 each additions and

multiplications over the entire algorithm, whereas it would be O(n 3 ) if the actual Gerschgorin bounds

were used. The cost of the entire modified Cholesky factorization is at most 2n 2 additions and n 2/2

multiplications greater than the n/6-O(n) each multiplications and additions for the standard Cholesky

factorization of positive definite matrices. If A is safely positive definite, there is no extra cost.

4



3 Example using the Modified Cholesky Factorization

The following discussion shows how the modified Choleskv factorization works on an a xampI-' matrix of

sizo: n - Consider Oe matrix

0.3571 -0.1030 0.0274 -0.0459

-0.1030 0.2525 0.0736 -0.3845
A =

0.0274 0.0736 0.2340 -0.2878

-0.0439 -0.3845 -0.2878 0.5549

The eigenvalues of this matrix are -.0767, .1442 , .4004, and .9307 and the maximum diagonal element.

-, is .5549. Let 1 = 6.0555e - 06, which is the value of machepsi on a Sun 3/75, using double

precision.

In the first iteration. -44, is the maximum diagonal element, therefore row and column 4 are

interchanged with row, and column 1. In performing the test of whether or not the min {A,, - -2'} <

r the minimum occurs at .A -, w hich is < 0, and consequently the algorithm switches to phase

The actual lower Gerschgorin bounds for the start of phase 2 are [-.1633, -.3086. -. 1548. .180S.

The maximum bound is the bound for row 4. hence row and column 1 are again interchanged with row

and column 4, and because this bound is greater than 0, Ell = 0.

Prior to the start of iteration 2, the updated lower Gerschgorin bound estimates become

r- 25CA. -1410. -. 14011 for rows 2 through 4. The maximum of these is the estimate for row 4. re-

sulting in a diagonal pivot of rows and columns 2 and 4. The actual lower Gerscigorin bound for row 2

is -. 1330. therefore £22 = .1330.

In the final iteration, the eigenvalues of the remaining 2 x 2 submatrix are .156329 and -.05211.5,

or AXo and Ah, respectively. The value -A.o + " (Ah, -Aj,) is .052119, which is less than E22, therefore

the algorithm sets both E33 and E44 to the value added to A 22 in the previous iteration, or .1330.

The Cholesky factors and pivot vector are

0.5976 0.0 1

-0.0769 0.8259 0.1330 -- 4
L E andP=

0.0458 -0.3442 0.4964 0.1330 3

-0.1724 -0.4816 -0.1697 0.3082 0.1330 2

where PTAP + E = LLT, and P is I permuted by the transformations recorded in P.

5



The ratio - A,(A). where A1 (A) is the most negativP eigenvalue of A. is 1.73. and t

rondition number of (A -F- E) is 21 S. In comparison. for the Gill, Murray. and Wright 119Si algorithm.

iv! "-- A,(.) is .t.5, and :h,.' condition number of (A - F) is 39.2.

4 Software for the Modified Cholesky Factorization

The code for the modified Choleskv factorization is a straightforward implementation of the algorithm

detailed in AppendLy I of Schnabel and Eskow [1988]. It is organized into one main user-callable sub-

program containing three smaller subroutines, each of which are called only once. These three smaller

subroutines serve to initialize variables at the start of the algorithm, initialize the actual Gerschgorin

bourids at the start of phase 2. and compute the factorization of the final 2 x 2 subujatrix in ph;.,. 2

The remainder of the factorization is performed by the main subroutine. In particular, while the -,(di

for pivoting in phase 1 and phase 2 is similar, it ha, been left in-line to prevent the necessitv of having

O(n) function calls. Because the row and column pivoting must affect only th-, lower triangle of the input

matrLx, this code is lengthy in comparison to the remainder of the algorithm. All non-integer variables

in the code are double precision.

The main subprogram is called by modcholesky(ndzm,n,A,g,macheps,7.,r 2 ,pivot,E) . The input

parameters to this subroutine are:

* ndun is the dimension of matr;x that contains A in the calling program.

e n is the dimension of the input matrix A.

* A is an n x n svmmetric matrix (only the lower triangular portion of A, including the diagonal, is

used, and it is overwritten b:" L).

a g is an n dimensional work vector.

* macheps is machine epsilon.

• ri is the reciprocal of the tolerance used for determining when to switch to phase 2, i.e. I/r1 is

the minimum condition number of a positive definite input matrix which may be perturbed by the

algorithm.

* r2 is the tolerance used for determining the maximum condition number of the final 2 x 2 submatrix

and in the equation for Ej.

6



I rtd In t~* tt" nt* -1x A4 I int, loawor Irian! Ular portioin ,including ili, tn~undign.

" i ot s a reodof how L,' row ; ind (ol umins of te ie atrix were p ermu I ed duirIng the fac>.-rizaticion

That is. e-ach .-" is initialized to, z, aind at each 1,eration. if row., and col umnis i and j ar, "wit ched.

hen P, and 1'. are swapped.

* L-1 -isn u1-vector, whose i ' ele nient is the amount added to the diagonal of A at the i" irtration (-,

the factorization.

A simpler drive-r, called by tncdch o1j'idim. n.A G, machcps~pztot. E) is also available. This driver sets the--

j-aramiv ors -,andI to -rach (Ps . and the remaining input and out put paramneters are ident- T'>

A sam pie- drive- programn. chic drzz ecr.f. and Its output are included with the code - ' cd

Ch,:-4-kv, factorizat i .I. The driver calls a fu(nctioni inch~ps to comput- machine epsilo-n for dcli-!

V.,c-Ision aritunietic. It can not be guaranteed that this iunction will return the correct valuieof machtp.,

crn every compuiter. so the user may want to che-k this and, if necessary, replace the call to maclrps

with a statement that assigns the actual value of machine epsilon for that computer to eps. The driver

program also calls a separate subprogram, inkmainz.f to generate random test matrices with eigenvalues

within a specified range. Calls to both rnodchudesky and modchol are dlemonstratecl in the drivecr-

Appendices A and B containi the sample: driver andI sample output. resp.:c-tivelv. A'ndxC

contains the modlified Cholcsky factorization code.

Note that if[one wishes to process a szparse matrix A incrementally as mentioned in Sectioni 1.

the code miust be simplified so that all pivoting is eliminated. In this case the calculation of Gerschgcrin

bound estimates is also unnecessary so the code is quite simple. The diagonal elements must still be

known throughout the factorization, but the rest of the matrix can then be processed incrementally, with

only the part involved in thc current elimiriaion step needed at any given iteration.



References

1 Denn'i, J. E.. and Schr-laho, R 13. .Vumrzcal Jfcthod.i for Uncnnstraned Ophmz:atzon and .,
h17f r E, Pitw Irent i,-H[ail. Englewood Cliffs. New Jersey, 1983.

"2 Gill. P E and Murray. W. New: n-type methods for 'unconstrained and linearly constrained opti-
mization. Mathematical Programming S, (1974), 311-350.

'31 Gill. P. E.. Murray. %V. anu Wright, M. 11. Practical Optimization. Academic Press. London. ICE !

*-I Gould. N. Private communication. 1989.

5] Schnab.l, R. B. and Eskow. E. A New modified Cholesky factorizaticn. University of Colorado
Department of Computer Science Technical Report Number CU-CS-415-88. (To appear in 5I.4-V
J. Sci. 5Uat. Computing.)

8



A Sample driver

St Y fr rtr ti l.ti, t -A ky a fct r 2 1 o n algorzh m.

integer n.ndim
double precision AL100,100)
double precision Atwo( 100.100)
double precision g(100)
double precision maxadd
integer pivot( 100)
double precision E(100)
double precision eps.taultau2
intcer z
doub, prk cision hI I low
rim-ni I Ci)

?11(chcp . u,routin, computes machine epsilon.
the following hne may be replaced by assignment to eps
" of correct machine epsilon constant for your machine

call machepsieps)

Tolerances used by nodchlesky subroutine.
C taul is used in determining when to switch to phase 2 and
C" tau2 is used in determining the amount to add to the diagonal
C of the final 2X2 submatrir.
C The default talues for these tolerances can be used

by calling modchol subroutine instead of modcholesky. 3

C The deflult zalues for taul and tau2 in modchol are : eps ** 1/3.

taul = ps "* (-./1)

tau2 eps * (L/3.)

C Initial seed for rondo ) .7'ber generator used to generate test

C matrices
z = 1000

C high and low are t e rany of the eigenvalues for the test matrix 40

C to be generated.

high = 1.0

low = - 1.0

C The first test problem will have dimension n=4, so that the entire
C problem can be printed out.

• ii i I9



n 4

print *."TEST PROBLEM #1
print *." ",,t NI at rix of ".n1
print *,"with eigenvailues within the range of "low." to "'high

call rnkniatrix( idinin.zA ,high,low ,At wog)

print *.."

print *,"Original 4X4 matrix"

do 25 i=l,n
25 print (26),(A(ij)j=l,n)
26 format (4f20.8)

call modchol(ndir.n A.gepspivot.E)

print * "
print *."Matrix after factorization with I in the lower triangle"

do 50 i=l.n 7

50 print (26),(Aij)j=l,n)

print ""
print *. "Iteration Pivot Amt added to Aii"
do 75 i=l,n

7.5 print (7 6),ipivot(i).e{i)
76 format (i2,l0xi2.l0x.f12.8)

maxadd = E(n)

print .
print *."Maximum amount added to the diagonal is".maxadd

C The next 3 test problems have sizes n=25,50,F' 75,
C with eigentalue ranges [-1,1],[-i,10000], F-,: [-10000,-i] respectively.

n =25

print *,..
print *,"TEST PROBLEM #2" Q0
print *,"Test Matrix of size",n
print *,"with eigenvalues in the range of ",low," to ",high

call mkmatrix(ndim,n,z,A,high,low,Atwo,g)

call modchol(ndim,nA,g,eps,pivot,E)

10



maxadd = E(n)

rrint *.",laxnium amount added to th.- diagonal is",maxadd

high 10000.0
low = -1.0
n = 50

call nikiiiatrix(ndimn.z.A.high.lowAtwog)

print *,
print *,"TEST PROBLEM #3"
print *,"Test Matrix of size",n
print *,"with eigenvalues in the range of ",low," to ",high

call mnodcholesky(ndimi.n.A .g.eps.tau 1 .tau2.pivot,E)

maxadd = E(n)

print *,".Maximum amount added to the diagonal is",maxadd

high = -1.0
low -10000.0
n = 75

print *""
print *."TEST PROBLEM #44"
print *."Test Matrix of size",n
print *,"with eigenvalues in the range of "low," to ",high 13J

call mkmatrix(ndim,n,z.A.highilow.Atwog)

call modchol(ndim.n,A,g,eps,pivot,E)

maxadd = E(n'

print *,"Ma imum amount added to the diagonal is",maxadd

140

stop
end

c macheps

subroutine macheps(eps) macheps

double precision eps

11



double precision temp

temp = 1.0

20 continue
temp = temp / 2.0
if ((1.0 + temp) .ne. 1.0) goto 20

eps = temp * 2.0

return
end

12



B Sample Driver Output

TEST PRCBLEM #1
Test Matrix of size 4
with eigenvalues within the range of -I.0000000000000 to 1.000000000000

Original 4X4 matr:x
0.35711021 -0.10302945 0.02737268 -0.04594879
-0.10302945 0.25254612 0.07358379 -0.38451624
0.02737268 0.07358379 0.23396662 -0.28782367
-0.04594879 -0.38451624 -0.28782367 0.55494709

Matrix after factorization with 1 in the lower triangle
0.59758699 -0.10302945 0.02737268 -0.04594879
-0.07689054 0.82587804 0.07358379 -0.38451624
0,04580534 -0.34424172 0.49639272 -0.28782367
-0.17240912 -0.48163633 -0.16986202 0.30827612

Iteration Pivot Amt added to Aii
1 1 0.00000000
2 4 0,13303961

3 3 0.13303961
4 2 0.13303961

Maximum amount added to the diagonal is 0.13303960618874

TEST PROBLEM #2

Test Matrix of size 25
with eigenvalues in the range of -1.0000000000000 to 1.0000000000000
Maximum amount added to the diagonal is 1.2576119845957

TEST PROBLEM #3
Test Matrix of size 50
with eigenvalues in the range of -1.0000000000000 to 10000.0000000000
Maximum amount added to the diagonal is 1.1271617927026

TEST PROBLEM #4

Test Matrix of size 75

with eigenvalues in the range of -10000.0000000000 to -1.0000000000000
Maximum amount added to the diagonal is 11618.452621394

13



C Modified Cholesky Factorization Code

C
C subroutine name. modcholesky
C
C authors Elizabeth Eskow and Robert B. Schnabel
C
C date December, 1988
C 17-
C purpose perform a modified cholesky factorization
C of the form (Ptranspose)AP + E = L(Ltranspose),
C where L is stored in the lower triangle of the
C original matrix A.
C The factorization has 2 phases:
C phase 1.- Pivot on the maximum diagonal element.
C Check that the normal cholesky update
C would result in a positive diagonal
C at the current iteration, and
C if so, do the normal cholesky update,
C otherwise switch to phase 2.
C phase 2: Pivot on the minimum of the negatives
C of the lower gerschgorin bound
C estimates.
C Compute the amount to add to the
C pivot elemcnt and add this
C to the pivot element.
C Do the cholesky update.
C Update the estimates of the
C gerschgorin bounds. 190
C
C input ndim - largest dimension of matrix that will be used
C
C n - dimension of matriz A
C
C A - n*n symmetric matrix (only lower triangular
C portion of .4, including the main diagonal, as used)
C
C g - n*1 work array
C 200

C macheps - machine epsilon
C
C taul - tolerance used for determining when to switch to
C phase 2
C
C tau2 - tolerance used for determining the maximum
C condition number of the final 2X2 submatrix.
C
C
C output : L - stored in the matrix A (in lower triangular 210

14



C portion of A. including the main diagonal)
C
C pirot - a record of how thC rows and columns
C of the matrix ucrC permuted while
C performing the decomposition
C
C E - n*1 array, the zth element is the
C amount added to the diagonal of A
C at the ith iteration
C 2 20
C
C I ...

subroutine modcholesky(ndim,n,A,g,machepstaul ,tau2,pivot.E) mo dcholesky

integer n,ndim
double precision A(ndim.ii),g(n),macheps,taul,tau2
integer pivot(n)
double precision E(n)

C
C I - cur-rent iteration number
C Iming - index of the row with the mi. of the
C neg. lower Gersch. bounds
C imaxd - index of the row with the maximum diag.
C element
C i.itemp.jpl,k - temporary integer variables
C delta - amount to add to Ajj at the jth iteration
C gamma - the maximum diagonal element of the original
C matrix A.
C normj - the I norm of A(colj). rows j+l -- > n. 240
C Ming - the minimum of the neg. lower Gersch. bounds
C maxd - the maximum diagonal element
C taugamma - taul * gamma
C phase] - logical, true if in phasel. otherwise false
C delta] .temp.jdmin.tdmin - temporary double precision vars.
C

integer j,iming,i,imaxd,itempjpl,k
double precision delta,gamma
double precision normj, ming,maxd 250
double precision deltal ,temp jdrnin,tdmintaugamma
logical phasel

call init(n, ndim, A, phasel, delta, pivot, g, E,
• ming,tau 1,gamma,taugamma)

do 10 j = 1, n-1
C
C PHASE 1
C 260

15



if ( phzel ) then
C
C find znder of max?num diagonal 4cment A(.i) where z>zj
C

mn:xd = A(jj)
imaxd = j

do 20 i = j+1, n
if (maxd It. A(ii)) then

maxd = A(ii)

imaxd 1 275
end if

20 continue

C
C pitot to the top the row and column with the max diag

C
if (imaxd ne. j) then

C
C swap row j with rou of mar diag
C 2SO

do 30 i = 1, j-1
ternp = A(j~i)

A(j,i) = A(imaxd.i)
A(imaxd.i) = temp

30 continue
C
C swap colb and row mardiag between j and mazrdag
C

do 35 i = j+1,imaxd-1
temp = A(ij) .90
A(ij) = A(imaxd.i)
A(imaxd,i) = temp

35 continue
C
C swap column j with column of mar diag
C

do 40 i = imaxd+l, n
temp = A(ij)

A(ij) = A(i,imaxd)
A(i,imaxd) - temp 300

40 continue
C
C swap diag elements
C

temp = A(jj)
AUjj) = A(imaxd,imaxd)
A(imaxd,imaxd) = temp

C
C swap elements of the pivot vector
C 310

16



itemp = pivot(j)
pivotlj) = pivot(inaxd)

pi'.ot(imaxd) = itemp

end if

C Check to see whether the normal cholesky update for this
C iteration would result in a positive diagonal,
C and if not then switch to phase 2. 30C

jpl = j+1

if (A(jj).gt.0) then

do 60 i = jpl, n
temp = A(ij) * A(ij) / A(jj)
tdmin = A(i.i) - temp
if (i ne. jpl) then

jdmin = min(jdmin, tdmin) 3.9',
else

jdmin = tdmin
end if

GO continue

if (jdrnin It. taugamma) phasel = false.
else

phase1 = false.
340

end if

if (phasel) then
C
C do the normal cholesky update if still in phase 1
C

A(jj) = dsqrt(A(jj))
do 70 i = j+1, n

A(ij) = A(ij) / A(jj)
70 continue 350

do 75 i=j+l,n
do 80 k = j+l, i

A(i,k) = A(i,k) - (A(ij) * A(kj))
80 continue
75 continue

if (j eq. n-I) A(n,n)=dsqrt(A(n,n))

else
360

17



C"

C calcuztl th negatzves of the lower ger'chgoTr'n bounds

call ralcgersch(ndir.n.j.gI

end if

end if

37-,

C
C PHASE 2
C

if (.not. phasel) then

if (j ne. n-i) then
C
C find the mnimum negative gcrshgorn bound
C

do 90 i = j,n 3

if (i ne. j) then
if (ming .gt. g(i)) then

ming = g(i)
ining i

end if
else

iming =

ring g(j)
end if

90 continue 39C

C pi'ot to the top the row and column with the
C minimum negative gerschgorzn bound
C

if (iming .ne. j) then
C
C swap row j w:th row of mzn gersch bound
C

do 100 i = 1, j-1 400

temp = A(j,i)
A(j,i) = A(iming,i)
A(iming,i) = temp

100 continue
C
C swap colj with row lining from j to iming
C

do 105 i = j+l,iming-1

temp = A(ij)
A(ij) = A(iming,i) 410

18



A(inilng.i) =temnp
IU5 con tinu v

.U11 ap V Iamn j th column of rnin yersc^h bound

do 110 i imi~ng-+1. n
temp A(ij)
A('ij) A(i.iming)
A(i,irning) = temp

110 continue4U
C
C swap diagonal elements
C

temp =A(jj)

A(jj) A(iming.imiung)
A(iming~iming) =temp

C
C SUQI) (t'mnis of the privot vector
C

itemp =pivot(j)
pivot(j) =pivot(iming)
pivot(irniing) =itemp

C
C suap elements of the negative gerschgorin bounds vector
C

temp =g(j)
g(j) =g(iming)
g(iming) =temp

end if 440

C
C Calculate delta and add to the diagonal.
C dclta~maz{ 0,-A (j,j) + max{ norrnj,taugamma},deltaprezous}

C where normjt.sum of A.(z.jjfor i=1,n,
C delta prenous is the delta computed at the previous iteration,
C and taugamma is taul ~gamma.
C

normj = 0.0
do 140 j = j+1, n 450

normj = normj + dabs(A(ij))
140 continue

temp =max (normj, tau gamma)
deltal =temp - A(jj)
temp =0.0

deltal =max(temp, deltal)
delta =max(deltal,delta)

E(j) =delta

A(jj) =A(jij) + E(j) 460

19



C
C update the gerschgonn bound estimates

C
if iA(j.j) .no normj) then

temp = knormj/A(jj)) - 1.0

do 150 i = j-+-l, n
g(i) = g(i) + dabs(A(i.j)) * temp

150 continue
47,)

end if
C
C do the cholesky update
C

A(jj) = dsqrt(:\(j j))
do 160 i j±1., n

A(ij) = A(ijI I/ A(j.j)
160 continue

do 165 i = j--1, n
do 170 k j-l. i 4

A(i.k) A(i.k) - (A(ij) A(k.j)j
170 continue
15 continue

else

call final2by2(ndim. n. A, E, j, tau2, deltagamma)

end if

end if

10 continue

return

end

C subroutine name : modchol
C
C purpose : Simple driver for the modified cholesky algorithm, Soo
C with the tolerances set to the default values.
C i.e. taul = iau2 = macheps ** 1/3
C
C input : n,ndim,A,g,macheps
C
C output : pivot,E
C (See subroutine modcholesky above for details on all parameters)

subroutine modchol(ndim,n,A,g,macheps,pivot,E) modchol

20



integer ndim. n
dIouble precision A(ndirn .(i).marh,
integer pivot(n)
double precision E(n)

double precision taul.tau2
taul = inacheps ** (1./3.)
tau2 = taul
call modcliolesky(ndimn,A.gmacheps.tau I ,tau2,pivot.F.)

return
end

C subroutine name •nii
C
C purpose set up for start of cholky faclorz:ation

(iput n %I7dunf. .A. ta%]

Z;ut/,?U Jzae! -I bootan ralue set to true if in phase one.

otherwise fal, e.
it ta - amount to add io .4j at iteration j

C pizot.g.E- described above in modcholesky
C ming - the minimum negathze ger;chgorin bound

Yamma - the maximum diagonal element of A
( taugamna - laul * gamma
C

subroutine nmt(n.ndim.Aphascl delt .pivot.g,Eming,

tau ,ganna.t augama

integer n.ndiM
double precision A( ndim .ni
logical phasel
d-uble precision 'lelta.g(n),E(n)

integer pivot(n)
double precision ming,taul,gamma~taugamnia

phasel = true.
delta = 0.0
ming = 0.0
do 10 i=l,n

pivot(i)=i
g(i)= 0
E(i) = 0

10 continue

c 56C

21



C find the marzinum magnitude of the diagonal elments.
if any diagonal el nent is negative, then phasel is false.

gamma = dabs( A(. I))
if '.( 1.1) It. 0) phasel = fals'.
do 20 i=2.ri

if tdabs(A(i.i)) .gt. gamma) garnma=A(i.i)
if (A(i.iJ) It. 0) phasel = false.

20 continue
57C

taugamma = taul * gamma

c if not in phase1, then calculate the initial gerschgonn bounds

c needed for the start of phase2.
C

if ( .ot,(phasel)) call calcgersch(ndim.n,A,1,g)

return
end

C subroutine nane . calcgersch

C purpose calculate the negative of the gerschgorin bounds

C called once at the start of phase II.
C

C input ndim. n. A.
C
C output g - an n rector containing the negatives of the

Gcrschgorin bounds.
C

subroutine ,alcgersch(ndim. n, A. j. g) calc gersch

integer ndim. n, j
double precision A(ndim,n), g(n)

integer i, k
double precision offrow 600

do 10 = j,n
offrow = 0.0
do 20 k = j, i-I

20 offrow = offrow + dabs(A(i,k))
do 30 k = i+l, n

30 offrow = offrow + dabs(A(k,i))
g(i) = offrow - A(i,i)

10 continue
610

22



return
end

(,Ua .t s lfl ls

s u bro utinti nayTfle final.by2

C purpose Handles final 2X2 submatrix in Phase II.
C Finds ezgenvalues of final 2 by 2 submatriz.
C calculates the amount to add to the diagonal.
C adds to the final 2 diagonal elements,
C and does the final update.
C
C input ndim, n, .4. E, j, tau2,
C delta - amount added to the diagonal in the
C previous iteration
C
C output -A - matr-i with complete 1 factor in the lower trianle,
C- n*1 zcctor containing the amount added to the diagonal
C at each iteration.
C deita - amount added to diagonal elements n-i and n.

** S* ........ * * * z* *~*S*t, S * ** * *.*$. Wr *

subroutine final2by2(ndim, n. A, E, j, tau2. deltagamma) final2hv2

integer ndim. n, j
double precision A(ndim.n), E(n), tau2, delta.gamma

double precision tI, .t2. 3.ambdal.lambda2.lambdahi,lambdaio
double precision deltal, temp

C
C find Zgent alues uf final 2 by 2 submatriz
C.

t2 = A(n-l,n-1) - A(n,n)
t3 = dsqrt(t2*t2 + 4.0*A(n,n-1)*A(n,n-1))

lambdal = (t1 - t3)/2.
la.mbda2 = (tl + t3)/2.
lambdahi = max(lambdal,lambda2)
lambdalo = min(lambdal,lambda2) 65o

C
C find delta such that:
C 1. the 12 condition number of the final
C 2X2 submatriz + delta*I <= tau2
C 2. delta >= previous delta,
C .9. larnalo + delta >= tau2 * gamma,
C where lambdalo is the smallest eigenvalue of the final
C 2X2 submatrir
C

660

23



deIt a 1 (lambdalii - larbdalo)/( 1 .0-tau2)
d" I taI=11 nA.Mdeltalgamma)
de)! aI= tau2 * deltal - lztmhdalo
temp =0.0
delta =max(delta. temp)
delta = max(deltal, delta)

if (delta .gt. 0.0) then
A(n-1,n-1) = A(n-l,n-l) + delta
A(n,n) A(n,ri) + delta 7

E(n-1) delta
E(n) =delta

end if
C
C final update
C

A(n-ILn-1) =dsqrt(A(n-i.n-1))
A(n.ri-1) =A(nn-1)/A(n-1.n-1)
A(nnr) = A(nn) - (A(n.n-1 )*A(n~n-1))
A(nn) =dcsqrt(A(n.n))

return
end

24



Unclassified

SECURITY CLASSirICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1. qPORT'SECURITY CLASS, IFICATION lb. RESTRICTIVE MARKINGS |

Unclassified
2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

M .. C Approved for public release;
SOECLSIFCArIONIOOWNGRAOING SCEOULE distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATIUN A4EPORT NUMBER(S)

CU-CS-443-89

6& NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

University of Colorado U.S. Army Research Office

6c AOORESS (City. State and ZIP Codeo 7t. AOORESS (City. Siae and ZIP COa)

Campus Box B-19 Post Office Box 12211

Boulder, CO 80309 Research Triangle Park, NC 27709-2211

S&. NAME OF FUNOINGJSPONSORING ]Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT [OENTIFICATION NUMBER

ORGANIZATIONI (if apa abce)M
DAAL-03-88-O086

S. AOORESS City. State and ZIP Coe) 10. SOURCE OF FUNOING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TI TLS (IIclua Solcunty C/ la i'icaltJoml,

Software for a New Modified Choleskv

12. PERSONAL AUTHOR(SI Factorization

Elizabeth Eskow and Robert B. Schnabel
13..TYP OFREPRT l~& TIME COVERE5 14. OATE OF REPORT IY,.. Amo. Dow' is. PAGE COUNT13.TTechnical R 'TROM_325.955.TO 90/5/15 89/08/31 28

16. SUPPLEMENTARY NOTATION

17. COSATI COOES IL SUBJECT TERMS iContinue on mrene it neces aay and identfy by bioca numbert

,FEL=O GROUP Sue. GR. Cholesky software, Cholesky factorization, non-positive

definite

19. AINTIRACT (Can unue on re..,,. it neceueely and identsf by bdoC .,,umber)

This paper describes the software for a new modified Cholesky factorization recently proposed by
the authors. Given a symmetric but not necessarily positive definite matrix A, the modified
Cholesky factorization computes a Cholesky factorization of A+E, where E=O ifA is safely posi-
tive definite, and E is a diagonal matrix chosen to make A+E positive definite otherwise. The
modified Cholesky factorization was introduced by Gill and Murray and refined by Gill, Murray

and Wright, and is commonly used in optimization algorithms. Our version, which is based upon
new techniques, has a considerably smaller a priori upper bound on the size of E than the Gill,
Murray and Wright factorization, and appears to generally produce a smaller E, and a well-
conditioned A+E, in practice. Its cost, like the Gill, Murray and Wright version, is only a small
multiple of n2 operations greater than the standard Cholesky factorization. Thus it may be useful

in optimization algorithms. We summarize our algorithm and describe the code and its use.

20. OISTRISUTIONAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CL ASSIFICATION

UNCLASSIFIEO/UNLIMITEO Z SAME AS Rp. C OTIC USERS C Unclassified

22j. NAME OF RESPONSIBLE INOIVIOUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

D IlnIjude .. me Code)
Dr. Jagdish Chandra 619/549-0641

DO FORM 1473, 83 APR EoITION OF I JAN 72 1S OBSOLETE. Unclassified
SECURITY CLASSIFICATION OF THIS PAGE


